summaryrefslogtreecommitdiffhomepage
path: root/include/unicode.h
blob: 8ac9f55294c5b4d9b61b802194bb93ee9e77ca5d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
// libunicode
//
// Author: Roland Reichwein <mail@reichwein.it>
//
// Available under the conditions of CC0 1.0 Universal
// https://creativecommons.org/publicdomain/zero/1.0/

#pragma once

#include <algorithm>
#include <cstdint>
#include <iterator>
#include <list>
#include <memory>
#include <stdexcept>
#include <string>
#include <type_traits>
#include <unordered_map>

#ifdef __cpp_char8_t
// char8_t available
 typedef char8_t utf8_t;
#else
 typedef char utf8_t;
#endif
typedef char iso_t;

namespace unicode {

 // bits_to_compare: limit bits to consider even further than defined by T
 // T: usually, char32_t, uint32_t etc.
 template<size_t bits_to_compare = 32, typename T>
 static inline bool is_valid_unicode(const T& value) noexcept
 {
  if constexpr(sizeof(T) == 1 || bits_to_compare <= 15)
   return true;
  else if constexpr(sizeof(T) == 2 || bits_to_compare <= 20)
   //return value <= 0xD7FF || value >= 0xE000;
   return (value & 0xF800) != 0xD800;
  else
   //return (value & 0xFFFFF800) != 0x0000D800 && (value >> 16) <= 0x10;
   return value <= 0xD7FF || (value >= 0xE000 && value <= 0x10FFFF);
 }

}

namespace unicode::detail {

 using namespace std::string_literals;

 template<size_t sequence_length, typename value_type>
 inline bool is_utf8_leading_byte(value_type byte) noexcept
 {
  static_assert(sequence_length <= 4);

  if constexpr(sequence_length == 1) {
   return !(byte & 0x80);
  } else {
   return (byte & static_cast<value_type>(0xFF << (7 - sequence_length))) == static_cast<value_type>(0xFF << (8 - sequence_length));
  }
 }

 template<typename value_type>
 inline bool is_utf8_followup_byte(value_type b) noexcept
 {
  return (b & 0b11000000) == 0b10000000;
 }

 template<typename value_type, typename... Tbytes>
 inline bool is_utf8_sequence(value_type byte0, Tbytes... bytes) noexcept
 {
  constexpr auto n{sizeof...(Tbytes) + 1};

  static_assert(n <= 4, "UTF-8 sequences of 1 through 4 code units are supported");

  return is_utf8_leading_byte<n>(byte0) &&
         (... && is_utf8_followup_byte(bytes)); // left fold for linear evaluation from left to right
 }

 template<typename T, typename std::enable_if_t<(sizeof(T) == 1), bool> = true>
 inline bool validate_utf(const std::basic_string<T>& s)
 {
  int i{};
  auto size{s.size()};
  while (i < size) {
   if (is_utf8_sequence(s[i])) {
    i++;
   } else if ((i < size - 1) && is_utf8_sequence(s[i], s[i + 1])) {
    i += 2;
   } else if ((i < size - 2) && is_utf8_sequence(s[i], s[i + 1], s[i + 2])) {
    if (((s[i] & 0xF) == 0xD) && ((s[i + 1] & 0x20) == 0x20))
     return false; // Reserved for UTF-16 surrogates: 0xD800..0xDFFF
    i += 3;
   } else if ((i < size - 3) && is_utf8_sequence(s[i], s[i + 1], s[i + 2], s[i + 3])) {
    if ((((s[i] & 7) << 2) | ((s[i + 1] >> 4) & 3)) >= 0x11)
     return false; // Unicode too big above 0x10FFFF
    i += 4;
   } else {
    return false;
   }
  }
  return true;
 }

 template<typename value_type, typename... Twords>
 inline bool is_utf16_sequence(value_type word0, Twords... words) noexcept
 {
  constexpr auto sequence_length{sizeof...(Twords) + 1};

  static_assert(sequence_length <= 2, "UTF-16 sequences of only 1 or 2 code units are supported");

  if constexpr(sequence_length == 1) {
   return is_valid_unicode(word0);
  } else {
   char16_t unit0 {static_cast<char16_t>(word0)};
   char16_t unit1 {static_cast<char16_t>((words, ...))};
   return (unit0 & 0xFC00) == 0xD800 && (unit1 & 0xFC00) == 0xDC00;
  }
 }

 template<typename T, typename std::enable_if_t<(sizeof(T) == 2), bool> = true>
 inline bool validate_utf(const std::basic_string<T>& s)
 {
  int i{};
  auto size{s.size()};
  while (i < size) {
   if (is_utf16_sequence(s[i])) {
    i++;
   } else if ((i < size - 1) && is_utf16_sequence(s[i], s[i + 1])) {
    i += 2;
   } else {
    return false;
   }
  }
  return true;
 }

 template<typename T, typename std::enable_if_t<(sizeof(T) == 4), bool> = true>
 inline bool validate_utf(const std::basic_string<T>& s)
 {
  for (auto i: s)
   if (!is_valid_unicode(i))
    return false;
  return true;
 }

 template<size_t sequence_length, typename value_type>
 inline char32_t decode_utf8_leading_byte(value_type b) noexcept
 {
  return static_cast<char32_t>(b & (0b1111111 >> sequence_length)) << ((sequence_length - 1) * 6);
 }

 template<typename value_type>
 inline char32_t decode_utf8_followup_byte(value_type b) noexcept
 {
  return static_cast<char32_t>(b & 0b00111111);
 }

 template<typename value_type, typename... Targs>
 inline char32_t decode_utf8_followup_byte(value_type b, Targs... bytes) noexcept
 {
  return decode_utf8_followup_byte(b) << (6 * sizeof...(Targs)) | decode_utf8_followup_byte(bytes...);
 }

 template<typename value_type, typename... Targs>
 inline char32_t decode_utf8_sequence(value_type b, Targs... bytes) noexcept
 {
  size_t constexpr sequence_length{sizeof...(Targs) + 1};

  static_assert(sequence_length <= 4);

  if constexpr (sequence_length == 1)
   return b;
  else
   return decode_utf8_leading_byte<sequence_length>(b) | decode_utf8_followup_byte(bytes...);
 }

 template<typename T, typename Container=std::basic_string<T>>
 struct utf_iterator
 {
  static_assert(sizeof(T) == 1 || sizeof(T) == 2 || sizeof(T) == 4);

  typedef T value_type;
  typedef char32_t internal_type;
  typedef char32_t& reference;
  typedef char32_t* pointer;
  typedef size_t difference_type;
  typedef std::input_iterator_tag iterator_category;
  typedef Container string_type;

  utf_iterator(const typename string_type::const_iterator& cbegin, const typename string_type::const_iterator& cend):
   iterator(cbegin), end_iterator(cend)
  {
  }

  utf_iterator(const utf_iterator& other) = default;
  utf_iterator& operator=(const utf_iterator& other) = default;

  size_t remaining_code_units() const noexcept
  {
   return std::distance(iterator, end_iterator);
  }

  template<size_t index>
  value_type get_code_unit() const noexcept
  {
   if constexpr (std::is_same<Container, typename std::list<value_type>>::value) {
    // std::list doesn't support it + n
    auto it{iterator};
    std::advance(it, index);
    return *it;
   } else {
    return *(iterator + index);
   }
  }

  template<typename... Tbytes>
  inline internal_type calculate_utf8_value(Tbytes... bytes)
  {
   size_t constexpr sequence_length{sizeof...(Tbytes)};
   static_assert(sequence_length >= 1 && sequence_length <= 4);

   if constexpr(sequence_length > 1) {
    if (remaining_code_units() < sequence_length)
     throw std::invalid_argument("Bad input: Not enough bytes left for decoding UTF-8 sequence");
   }

   if (is_utf8_sequence(bytes...)) {
    std::advance(iterator, sequence_length);
    internal_type result{decode_utf8_sequence(bytes...)};
    if (!unicode::is_valid_unicode<sequence_length * 6>(result))
     throw std::invalid_argument("Invalid Unicode character: "s + std::to_string(static_cast<uint32_t>(result)));
    return result;
   } else {
    if constexpr(sequence_length <= 3) // template recursion break condition: UTF-8 has 1..4 code units
     return calculate_utf8_value(bytes..., static_cast<utf8_t>(get_code_unit<sequence_length>()));
    else
     throw std::invalid_argument("Bad UTF-8 input: Invalid 4 byte sequence");
   }
  }

  template<class X = value_type, typename std::enable_if_t<(sizeof(X) == 1), bool> = true>
  inline internal_type calculate_value()
  {
   return calculate_utf8_value(static_cast<utf8_t>(get_code_unit<0>()));
  }

  template<class X = value_type, typename std::enable_if_t<(sizeof(X) == 2), bool> = true>
  inline internal_type calculate_value()
  {
   char16_t unit0 {static_cast<char16_t>(get_code_unit<0>())};

   if (is_valid_unicode(unit0)) { // 1 unit (BMP Basic Multilingual Plane)
    std::advance(iterator, 1);
    return unit0;
   } else {
    if (remaining_code_units() < 2)
     throw std::invalid_argument("Bad input: Continuation of first UTF-16 unit missing");

    char16_t unit1 {static_cast<char16_t>(get_code_unit<1>())};
    if ((unit0 & 0xFC00) != 0xD800 || (unit1 & 0xFC00) != 0xDC00)
     throw std::invalid_argument("Bad input: 2 malformed UTF-16 surrogates");

    std::advance(iterator, 2);
    return (static_cast<internal_type>(unit0 & 0x03FF) << 10 | (unit1 & 0x03FF)) + 0x10000;
   }
  }

  template<class X = value_type, typename std::enable_if_t<(sizeof(X) == 4), bool> = true>
  inline internal_type calculate_value()
  {
   internal_type result {static_cast<internal_type>(get_code_unit<0>())};

   if (!unicode::is_valid_unicode(result))
    throw std::invalid_argument("Invalid Unicode character: "s + std::to_string(static_cast<uint32_t>(result)));

   std::advance(iterator, 1);

   return result;
  }

  // pre-increment
  utf_iterator& operator++()
  {
   return *this;
  }

  bool operator!=(const utf_iterator& other) const
  {
   return std::distance(iterator, end_iterator) != std::distance(other.iterator, other.end_iterator);
  }

  internal_type operator*()
  {
   return calculate_value();
  }

  utf_iterator& operator+=(size_t distance)
  {
   std::advance(iterator, distance);
   return *this;
  }

  size_t operator-(const utf_iterator& other) const
  {
   return iterator - other.iterator;
  }

 private:
  typename string_type::const_iterator iterator;
  typename string_type::const_iterator end_iterator;
 };

 template<typename T, typename Container=std::basic_string<T>>
 struct utf_back_insert_iterator
 {
  static_assert(sizeof(T) == 1 || sizeof(T) == 2 || sizeof(T) == 4);

  typedef T value_type;
  typedef char32_t internal_type;
  typedef Container string_type;
  typedef utf_back_insert_iterator& reference;
  typedef utf_back_insert_iterator* pointer;
  typedef size_t difference_type;
  typedef std::output_iterator_tag iterator_category;

  utf_back_insert_iterator(string_type& s): s(s) {}

  utf_back_insert_iterator& operator=(const utf_back_insert_iterator& other)
  {
   if (std::addressof(other.s) != std::addressof(s))
    throw std::runtime_error("utf_back_insert_iterator assignment operator actually called! Iterator should not be assigned to.");

   return *this;
  }

  // no-op
  reference operator++()
  {
   return *this;
  }

  // support *x = value, together with operator=()
  reference operator*()
  {
   return *this;
  }

  // n is number of UTF-8 bytes in sequence
  template<size_t n>
  inline static value_type byte0_of(internal_type value)
  {
   return (value >> 6 * (n - 1)) | (0xFF << (8 - n));
  }

  // n is index of 6-bit groups, counting from bit 0
  template<size_t n>
  inline static value_type trailing_byte(internal_type value)
  {
   return ((value >> n * 6) & 0b111111) | 0b10000000;
  }

  // calculate UTF-8 sequence byte for m >= 2 bytes sequences (i.e. non-ASCII)
  // assume value to be valid Unicode value for given byte position
  template<size_t n, size_t m>
  inline static value_type byte_n_of_m(internal_type value)
  {
   if constexpr (n == 0)
    return byte0_of<m>(value);
   else
    return trailing_byte<m - n - 1>(value);
  }

  template<typename... Args>
  inline void append(Args&&... args)
  {
   if constexpr (std::is_same<Container, typename std::basic_string<value_type>>::value) {
    s.append({args...});
   } else {
    (s.emplace_back(args), ...);
   }
  }

  template<class X = value_type, typename std::enable_if_t<(sizeof(X) == 1), bool> = true>
  inline void append_utf(const internal_type& value)
  {
   if (value < 0x80) { // 1 byte
    append(static_cast<value_type>(value));
   } else if (value < 0x800) { // 2 bytes
    append(byte_n_of_m<0,2>(value), byte_n_of_m<1,2>(value));
   } else if (value < 0x10000) { // 3 bytes
    append(byte_n_of_m<0,3>(value), byte_n_of_m<1,3>(value), byte_n_of_m<2,3>(value));
   } else if (value < 0x110000) { // 4 bytes
    append(byte_n_of_m<0,4>(value), byte_n_of_m<1,4>(value), byte_n_of_m<2,4>(value), byte_n_of_m<3,4>(value));
   } else
    throw std::runtime_error("Invalid internal Unicode value: "s + std::to_string(static_cast<uint32_t>(value)));
  }

  template<class X = value_type, typename std::enable_if_t<(sizeof(X) == 2), bool> = true>
  inline void append_utf(const internal_type& value)
  {
   if (value <= 0xFFFF) { // expect value to be already valid Unicode values (checked in input iterator)
    append(static_cast<value_type>(value));
   } else {
    internal_type value_reduced{value - 0x10000};
    append(static_cast<value_type>((value_reduced >> 10) + 0xD800), static_cast<value_type>((value_reduced & 0x3FF) + 0xDC00));
   }
  }

  template<class X = value_type, typename std::enable_if_t<(sizeof(X) == 4), bool> = true>
  inline void append_utf(const internal_type& value)
  {
   // expect value to be already valid Unicode values (checked in input iterator)
   append(static_cast<value_type>(value));
  }

  reference operator=(const internal_type& value)
  {
   append_utf(value);
   return *this;
  }

 private:
  typename utf_back_insert_iterator::string_type& s;
 };

 typedef std::unordered_map<iso_t, char32_t> iso_map_type;
 typedef std::unordered_map<char32_t, iso_t> iso_map_type_reverse;

 // ISO-8859-1 is lower 8-bit of Unicode, so no exceptions necessary
 static inline iso_map_type iso_8859_1_map;

 // ISO-8859-15 is lower 8-bit of Unicode, except for:
 static inline iso_map_type iso_8859_15_map {
  { '\xA4', U'\u20AC' }, // €
  { '\xA6', U'\u0160' }, // Š
  { '\xA8', U'\u0161' }, // š
  { '\xB4', U'\u017D' }, // Ž
  { '\xB8', U'\u017E' }, // ž
  { '\xBC', U'\u0152' }, // Œ
  { '\xBD', U'\u0153' }, // œ
  { '\xBE', U'\u0178' }, // Ÿ
 };

 inline iso_map_type_reverse reverse_iso_map(const iso_map_type& map) {
  iso_map_type_reverse result;
  std::for_each(map.cbegin(), map.cend(),
                [&](const iso_map_type::value_type& pair)
                 {
                  result.emplace(pair.second, pair.first);
                 });
  return result;
 }

 static inline iso_map_type_reverse iso_8859_15_map_reverse { reverse_iso_map(iso_8859_15_map) };
 static inline iso_map_type_reverse iso_8859_1_map_reverse { reverse_iso_map(iso_8859_1_map) };

} // namespace unicode::detail

namespace unicode {

 using namespace detail;

 template<unicode::detail::iso_map_type& Map=iso_8859_1_map, typename Container=std::basic_string<iso_t>>
 struct iso_iterator {
  typedef iso_t value_type;
  typedef char32_t internal_type;
  typedef char32_t& reference;
  typedef char32_t* pointer;
  typedef size_t difference_type;
  typedef std::input_iterator_tag iterator_category;
  typedef typename Container::const_iterator iterator;
  typedef Container string_type;

  iso_iterator(const iterator& it): m_it(it) {}

  // pre-increment
  iso_iterator& operator++()
  {
   ++m_it;
   return *this;
  }

  bool operator!=(const iso_iterator& other) const
  {
   return m_it != other.m_it;
  }

  // return reference?
  internal_type operator*() const
  {
   value_type value{*m_it};

   if constexpr(std::addressof(Map) != std::addressof(iso_8859_1_map)) // mapping of 128 <= x <= 255 needed
   {
    auto it{Map.find(value)};
    if (it != Map.end())
     return it->second;
   }
   return static_cast<internal_type>(static_cast<uint8_t>(value));
  }

  iso_iterator& operator+=(size_t distance)
  {
   std::advance(m_it, distance);
   return *this;
  }

  difference_type operator-(const iso_iterator& other) const
  {
   return m_it - other.m_it;
  }

 private:
  iterator m_it;
 };

 template<unicode::detail::iso_map_type_reverse& Map=iso_8859_1_map_reverse, typename Container=std::basic_string<iso_t>>
 struct iso_back_insert_iterator {
  typedef iso_back_insert_iterator& reference;
  typedef iso_back_insert_iterator* pointer;
  typedef size_t difference_type;
  typedef iso_t value_type;
  typedef char32_t internal_type;
  typedef std::output_iterator_tag iterator_category;
  typedef Container string_type;
  
  iso_back_insert_iterator(string_type& s): s(s) {}

  iso_back_insert_iterator& operator=(const iso_back_insert_iterator& other)
  {
   if (std::addressof(other.s) != std::addressof(s))
    throw std::runtime_error("iso_back_insert_iterator assignment operator actually called! Iterator should not be assigned to.");

   return *this;
  }

  // no-op
  reference operator++()
  {
   return *this;
  }

  // support *x = value, together with operator=()
  reference operator*()
  {
   return *this;
  }

  reference operator=(const internal_type& value)
  {
   if constexpr(std::addressof(Map) != std::addressof(iso_8859_1_map_reverse)) // mapping of 128 <= x <= 255 needed
   {
    auto it{Map.find(value)};
    if (it != Map.end()) {
     s.push_back(it->second);
     return *this;
    }
   }

   if (value > 255)
    throw std::invalid_argument("Bad ISO 8859 value above 255: "s + std::to_string(static_cast<uint32_t>(value)));

   s.push_back(static_cast<typename iso_back_insert_iterator::value_type>(value));
   return *this;
  }

 private:
  typename iso_back_insert_iterator::string_type& s;
 };

 // Encoding for convert() and ISO-8859-*
 template<typename InputIt, typename OutputIt>
 struct ISO_8859
 {
  typedef iso_t value_type;
  typedef typename InputIt::string_type string_type;

  static InputIt begin(const typename InputIt::string_type& s)
  {
   return InputIt(s.cbegin());
  }

  static InputIt end(const typename InputIt::string_type& s)
  {
   return InputIt(s.cend());
  }

  static OutputIt back_inserter(typename OutputIt::string_type& s)
  {
   return OutputIt(s);
  }
 };

 // Encoding for convert() and UTF-*
 template<typename InputIt, typename OutputIt>
 struct UTF
 {
  typedef typename OutputIt::value_type value_type;
  typedef typename InputIt::string_type string_type;

  static InputIt begin(const typename InputIt::string_type& s)
  {
   return InputIt{s.cbegin(), s.cend()};
  }

  static InputIt end(const typename InputIt::string_type& s)
  {
   return InputIt{s.cend(), s.cend()};
  }

  static OutputIt back_inserter(typename OutputIt::string_type& s)
  {
   return OutputIt(s);
  }
 };

 // Encoding for convert()
 typedef ISO_8859<iso_iterator<>, iso_back_insert_iterator<>> ISO_8859_1;
 typedef ISO_8859<iso_iterator<iso_8859_15_map>, iso_back_insert_iterator<iso_8859_15_map_reverse>> ISO_8859_15;
 
 typedef UTF<utf_iterator<utf8_t>, utf_back_insert_iterator<utf8_t>> UTF_8;
 typedef UTF<utf_iterator<char16_t>, utf_back_insert_iterator<char16_t>> UTF_16;
 typedef UTF<utf_iterator<char32_t>, utf_back_insert_iterator<char32_t>> UTF_32;

 // std::distance doesn't work here: it is based on "output" distance of iterators
 template<class Iterator>
 inline size_t input_distance(const Iterator& it1, const Iterator& it2)
 {
  return it2 - it1;
 }
 
 template<class Iterator>
 inline size_t input_distance_bytes(const Iterator& it1, const Iterator& it2)
 {
  return input_distance(it1, it2) * sizeof(typename Iterator::value_type);
 }

 // Optimizations following:
 static const size_t accu_size {sizeof(size_t)};

 template<int value_size>
 struct ConvertInputOptimizer {};

 template<> struct ConvertInputOptimizer<1>
 {
  static const uint32_t ascii_mask { 0x80808080 };
 };
 
 template<> struct ConvertInputOptimizer<2>
 {
  static const uint32_t ascii_mask { 0xFF80FF80 };
 };
 
 template<> struct ConvertInputOptimizer<4>
 {
  static const uint32_t ascii_mask { 0xFFFFFF80 };
 };

 template<int AccuSize, class ConvertInputOptimizer>
 struct ArchitectureOptimizer {};

 template<class ConvertInputOptimizer>
 struct ArchitectureOptimizer<4, ConvertInputOptimizer>
 {
  typedef ConvertInputOptimizer input_optimizer;
  typedef uint32_t accu_type;
  static const accu_type addr_mask {accu_size - 1};
  static const accu_type ascii_mask { (accu_type)input_optimizer::ascii_mask };
  static const accu_type ascii_value { 0ULL };
  
  template<typename input_value_type, class output_string_type>
  inline static void append(const input_value_type* addr, output_string_type& s)
  {
   if constexpr(sizeof(input_value_type) == sizeof(typename output_string_type::value_type)) {
    s.append(reinterpret_cast<const typename output_string_type::value_type*>(addr), accu_size / sizeof(input_value_type));
   } else if constexpr(sizeof(input_value_type) == 1) {
    s.append({static_cast<typename output_string_type::value_type>(addr[0]),
              static_cast<typename output_string_type::value_type>(addr[1]),
              static_cast<typename output_string_type::value_type>(addr[2]),
              static_cast<typename output_string_type::value_type>(addr[3])});
   } else if constexpr(sizeof(input_value_type) == 2) {
    s.append({static_cast<typename output_string_type::value_type>(addr[0]),
              static_cast<typename output_string_type::value_type>(addr[1])});
   } else if constexpr(sizeof(input_value_type) == 4) {
    s.append({static_cast<typename output_string_type::value_type>(addr[0])});
   }
  }
 };

 template<class ConvertInputOptimizer>
 struct ArchitectureOptimizer<8, ConvertInputOptimizer>
 {
  typedef ConvertInputOptimizer input_optimizer;
  typedef uint64_t accu_type;
  static const accu_type addr_mask {accu_size - 1};
  static const accu_type ascii_mask { ((accu_type)input_optimizer::ascii_mask) << 32 | (accu_type)input_optimizer::ascii_mask };
  static const accu_type ascii_value { 0ULL };
  
  template<typename input_value_type, class output_string_type>
  inline static void append(const input_value_type* addr, output_string_type& s)
  {
   if constexpr(sizeof(input_value_type) == sizeof(typename output_string_type::value_type)) {
    s.append(reinterpret_cast<const typename output_string_type::value_type*>(addr), accu_size / sizeof(input_value_type));
   } else if constexpr(sizeof(input_value_type) == 1) {
    s.append({static_cast<typename output_string_type::value_type>(addr[0]),
              static_cast<typename output_string_type::value_type>(addr[1]),
              static_cast<typename output_string_type::value_type>(addr[2]),
              static_cast<typename output_string_type::value_type>(addr[3]),
              static_cast<typename output_string_type::value_type>(addr[4]),
              static_cast<typename output_string_type::value_type>(addr[5]),
              static_cast<typename output_string_type::value_type>(addr[6]),
              static_cast<typename output_string_type::value_type>(addr[7])});
   } else if constexpr(sizeof(input_value_type) == 2) {
    s.append({static_cast<typename output_string_type::value_type>(addr[0]),
              static_cast<typename output_string_type::value_type>(addr[1]),
              static_cast<typename output_string_type::value_type>(addr[2]),
              static_cast<typename output_string_type::value_type>(addr[3])});
   } else if constexpr(sizeof(input_value_type) == 4) {
    s.append({static_cast<typename output_string_type::value_type>(addr[0]),
              static_cast<typename output_string_type::value_type>(addr[1])});
   }
  }

 }; // class ArchitectureOptimizer

 // From and To are Encodings
 template<typename From, typename To, std::enable_if_t<std::is_empty<From>::value, bool> = true>
 typename To::string_type convert_optimized(const typename From::string_type& s)
 {
  typename To::string_type result;
  typedef ConvertInputOptimizer<sizeof(typename From::value_type)> input_optimizer;
  typedef ArchitectureOptimizer<accu_size, input_optimizer> arch_optimizer;

  auto begin{From::begin(s)};
  auto end{From::end(s)};
  auto back_inserter{To::back_inserter(result)};
  auto addr{reinterpret_cast<const typename arch_optimizer::accu_type*>(&s.data()[s.size() - input_distance(begin, end)])};
  while (input_distance_bytes(begin, end) >= accu_size) {
   if (((uintptr_t)(void*)addr & arch_optimizer::addr_mask) == 0) {
    while (input_distance_bytes(begin, end) >= accu_size) {
     typename arch_optimizer::accu_type data{*addr};
     if ((data & arch_optimizer::ascii_mask) == arch_optimizer::ascii_value) {
      arch_optimizer::template append(reinterpret_cast<const typename From::value_type*>(addr), result);
      begin += accu_size / sizeof(typename From::value_type);
      ++addr;
     } else {
      // just advance one code unit for now and break to trigger unoptimized
      // version until next accu boundary
      back_inserter = *begin;
      ++begin;
      break;
     }
    }
   }

   // keep up after unaligned Non-ASCII code points
   while (begin != end && (uintptr_t)(void*)(addr = reinterpret_cast<const typename arch_optimizer::accu_type*>(&s.data()[s.size() - input_distance(begin, end)])) & arch_optimizer::addr_mask) {
    back_inserter = *begin;
    ++begin;
   }
  }

  // remainder < 8 bytes   
  while (begin != end) {
   back_inserter = *begin;
   ++begin;
  }

  return result;
 }

 // From and To are Encodings
 template<typename From, typename To, std::enable_if_t<std::is_empty<From>::value, bool> = true>
 typename To::string_type convert(const typename From::string_type& s)
 {
  // if input type == output type, only validate and return input, is appropriate
  if constexpr(sizeof(typename From::value_type) == sizeof(typename To::value_type) &&
               std::is_same_v<From, UTF<utf_iterator<typename From::value_type>, utf_back_insert_iterator<typename From::value_type>>> &&
               std::is_same_v<To, UTF<utf_iterator<typename To::value_type>, utf_back_insert_iterator<typename To::value_type>>>) {
   if (validate_utf<typename From::value_type>(s)) {
    return s;
   } else {
    throw std::invalid_argument("Invalid UTF input");
   }
  } if constexpr(accu_size == 4 || accu_size == 8) {
   return convert_optimized<From, To>(s);
  } else {
   typename To::string_type result;
   std::copy(From::begin(s), From::end(s), To::back_inserter(result));
   return result;
  }
 }

 // Helper to get correct Encoding from char type, e.g. Encoding<typename decltype(s)::value_type>::type or Encoding_t<typename decltype(s)::value_type>
 template<typename T>
 struct Encoding
 {
 };

 template<>
 struct Encoding<utf8_t>
 {
  typedef UTF_8 type;
 };

 template<>
 struct Encoding<char16_t>
 {
  typedef UTF_16 type;
 };

 template<>
 struct Encoding<char32_t>
 {
  typedef UTF_32 type;
 };

 template<typename T>
 using Encoding_t = typename Encoding<T>::type;

 // From and To are from: utf8_t (i.e. char or char8_t (C++20)), char16_t and char32_t, char, wchar_t, uint8_t, uint16_t, uint32_t
 template<typename From, typename To,
  typename FromContainer=std::basic_string<From>,
  typename ToContainer=std::basic_string<To>,
  std::enable_if_t<std::is_trivial<From>::value && std::is_scalar<From>::value && !std::is_empty<From>::value, bool> = true>
 ToContainer convert(const FromContainer& s)
 {
  typedef UTF<utf_iterator<From>, utf_back_insert_iterator<To>> UTF_Trait;
  
  ToContainer result;

  std::copy(UTF_Trait::begin(s), UTF_Trait::end(s), UTF_Trait::back_inserter(result));

  return result;
 }

 // From and To are containers
 template<typename FromContainer, typename ToContainer,
  std::enable_if_t<!std::is_empty<FromContainer>::value && !std::is_empty<ToContainer>::value, bool> = true
 >
 ToContainer convert(const FromContainer& s)
 {
  typedef UTF<utf_iterator<typename FromContainer::value_type, FromContainer>, utf_back_insert_iterator<typename ToContainer::value_type, ToContainer>> UTF_Trait;
  
  ToContainer result;

  std::copy(UTF_Trait::begin(s), UTF_Trait::end(s), UTF_Trait::back_inserter(result));

  return result;
 }

 // Container version
 template<typename Container, std::enable_if_t<!std::is_empty<Container>::value, bool> = true>
 bool is_valid_utf(const Container& s)
 {
  typedef UTF<utf_iterator<typename Container::value_type, Container>, utf_back_insert_iterator<typename Container::value_type, Container>> UTF_Trait;
  
  try {
   std::for_each(UTF_Trait::begin(s), UTF_Trait::end(s), [](const char32_t& c){});
  } catch (const std::invalid_argument&) {
   return false;
  }
  return true;
 }

 // basic type version
 template<typename T,
  typename Container=std::basic_string<T>,
  std::enable_if_t<std::is_trivial<T>::value && !std::is_empty<T>::value, bool> = true>
 bool is_valid_utf(const Container& s)
 {
  typedef UTF<utf_iterator<T>, utf_back_insert_iterator<T>> UTF_Trait;
  
  try {
   std::for_each(UTF_Trait::begin(s), UTF_Trait::end(s), [](const char32_t& c){});
  } catch (const std::invalid_argument&) {
   return false;
  }
  return true;
 }

 // Encoding version
 template<typename Encoding, std::enable_if_t<std::is_empty<Encoding>::value, bool> = true>
 bool is_valid_utf(const typename Encoding::string_type& s)
 {
  return validate_utf<typename Encoding::value_type>(s);
 }

} // namespace unicode